首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54278篇
  免费   10549篇
  国内免费   12130篇
测绘学   7249篇
大气科学   8504篇
地球物理   10792篇
地质学   27566篇
海洋学   6785篇
天文学   3540篇
综合类   4014篇
自然地理   8507篇
  2024年   126篇
  2023年   659篇
  2022年   1865篇
  2021年   2169篇
  2020年   2214篇
  2019年   2407篇
  2018年   2081篇
  2017年   2435篇
  2016年   2505篇
  2015年   2822篇
  2014年   3302篇
  2013年   3496篇
  2012年   3504篇
  2011年   3671篇
  2010年   3045篇
  2009年   3710篇
  2008年   3670篇
  2007年   3817篇
  2006年   3692篇
  2005年   3420篇
  2004年   3003篇
  2003年   2755篇
  2002年   2414篇
  2001年   2109篇
  2000年   2013篇
  1999年   1792篇
  1998年   1589篇
  1997年   1178篇
  1996年   1011篇
  1995年   923篇
  1994年   846篇
  1993年   715篇
  1992年   476篇
  1991年   419篇
  1990年   278篇
  1989年   218篇
  1988年   192篇
  1987年   111篇
  1986年   61篇
  1985年   57篇
  1984年   30篇
  1983年   13篇
  1982年   20篇
  1981年   15篇
  1980年   17篇
  1979年   14篇
  1978年   23篇
  1977年   8篇
  1976年   5篇
  1954年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
ABSTRACT

The Green-Ampt (GA) model has been widely used to evaluate soil water infiltration. While a simple piston profile is commonly used, the wetting profile of a soil changes during infiltration and a quarter-ellipse has been found to better describe its evolution. This study aims to improve the GA model and discuss the model parameters when the quarter-ellipse profile is utilized. The soil column is divided into three zones: saturated, transient and dry. The variable γ is introduced to express the ratio of the saturated zone depth to the wetting front depth. A modified GA model is derived via mathematical methods, but an exact solution is difficult to obtain. Therefore, a simplified (SGA) model is developed via a segmented method. Compared with the measured results, the SGA model is more accurate than the traditional model. Finally, the model parameters are discussed and a value of γ = 0.5 is recommended.  相似文献   
102.
Effectively estimating groundwater recharge is critical to manage water resources, especially in arid and semi-arid regions as impacted by intensive human activities and climate changes. Rare insights have been gained into groundwater recharge since direct observation is hard to carry out. Although several methods are currently available to estimate groundwater recharge, the estimated results may cover noticeable bias. The behaviours of different methods based on different conceptual frameworks and exhibiting different levels of complexity should be examined to estimate actual groundwater recharge. This study aims to assess the performance of four common methods to estimate groundwater recharge. For this end, large-scale lysimeters equipped with soil water content sensors and water table sensors were set up at a research site established in Guanzhong Basin of China. The data achieved by 1-year observation were employed to compare four estimation methods. As revealed from the results, the following findings are drawn. (a) Groundwater level fluctuation (GLF) method is simple, whereas its accuracy is determined by specific yield, and adopting a water balance method to estimate specific yield can considerably enhance the accuracy of GLF. (b) The calibrated numerical model can obtain the optimal result compared with the other methods, whereas long-term observation data are required for parameter calibration. (c) In the water balance method, the maximum entropy production (MEP) model and a practical method (estimating evaporation between two rainfall events) were used to calculate evaporation. As indicated by the results, water balance method combined with MEP is capable of obtaining more reliable results of groundwater recharge compared with the practical method. (d) With an analytical model based on linearized Richards' equation, accurate results can be achieved. What is more, the analytical model only needs the measurement of soil moisture near the surface. The limitation of this method is that it is difficult to determine the maximal water flux. The mentioned findings are of critical implications to the management and sustainable development of groundwater.  相似文献   
103.
为提高混凝土剪力墙受弯性能计算的准确度,开展强震下混凝土剪力墙受弯性能试验研究。选取1个混凝土剪力墙对比试件和3个测试试件作为研究对象,对试件施加垂直荷载和水平荷载,模拟强烈地震作用力。试验前期准备工作完成后,建立分离式有限元模型,通过计算混凝土在受压和受拉状态下的损伤弹塑性刚度,完成对有限元模型中混凝土塑性损伤分析,在此基础上,计算混凝土剪力墙受弯承载力。利用有限元模型对3个测试试件进行模拟试验,结果表明,强烈地震后3个试件的荷载-位移曲线均与实际位移值接近,且混凝土剪力墙受弯承载力试验结果与实际值的误差在2%以内,表明试验研究方法具有一定的可行性,数值模拟结果较为准确。  相似文献   
104.
This paper analyzes the backscatter of the microwave signal in a boreal forest environment based on a Ku -band airborne Frequency-Modulated Continuous Waveform (FMCW) profiling radar—Tomoradar. We selected a half-managed boreal forest in the southern part of Finland for a field test. By decomposing the waveform collected by the Tomoradar, the vertical canopy structure was achieved. Based on the amplitude of the waveform, the Backscattered Energy Ratio of Canopy-to-Total (BERCT) was calculated. Meanwhile, the canopy fraction was derived from the corresponding point cloud recorded by a Velodyne VLP-16 LiDAR mounted on the same platform. Lidar-derived canopy fraction was obtained by counting the number of the first/ the strongest returns versus the total amount of returns. Qualitative and quantitative analysis of radar-derived BERCT on lidar-derived canopy fraction and canopy height are investigated. A fitted model is derived to describe the Ku-band microwave backscatter in the boreal forest to numerically analyze the proportion contributed by four factors: lidar-derived canopy fraction, radar-derived canopy height, the radar-derived distance between trees and radar sensor and other factors, from co-polarization Tomoradar measurements. The Root Mean Squared Error (RMSE) of the proposed model was 0.0958, and the coefficient of determination R2 was 0.912. The fitted model reveals that the correlation coefficient between radar-derived BERCT and lidar-derived canopy fraction is 0.84, which illustrates that lidar surface reflection explains the majority of the profiling /waveform radar response. Thus, vertical canopy structure derived from lidar can be used for the benefit of radar analysis.  相似文献   
105.
机载LiDAR点云的分类是利用其进行城市场景三维重建的关键步骤之一。为充分利用现有的图像领域性能较好的深度学习网络模型,提高点云分类精度,并降低训练时间和对训练样本数量的要求,本文提出一种基于深度残差网络的机载LiDAR点云分类方法。首先提取归一化高程、表面变化率、强度和归一化植被指数4种具有较高区分度的点云低层次特征;然后通过设置不同的邻域大小和视角,利用所提出的点云特征图生成策略,得到多尺度和多视角点云特征图;再将点云特征图输入到预训练的深度残差网络,提取多尺度和多视角深层次特征;最后构建并训练神经网络分类器,利用训练的模型对待分类点云进行预测,经后处理得到分类结果。利用ISPRS三维语义标记竞赛的公开标准数据集进行试验,结果表明,本文方法可有效区分建筑物、地面、车辆等8类地物,分类结果的总体精度为87.1%,可为城市场景三维重建提供可靠的信息。  相似文献   
106.
为满足复杂地形景区对三维地图导览的需求,构建更为清晰的三维地图模型,提供良好的三维导览地图设计方案显得尤为重要。为了更好地与卫星影像进行贴合,DEM数据的采样密度要与卫星影像的分辨率一致。本文通过对比当下常用的四种空间插值方法的适用范围与运用特点,设置相关阈值及权重,直观比较了四种插值方法产生的插值结果,选择更适合复杂景区DEM插值的插值方法并对其进行精度提升,以此得到符合精度要求的DEM数据。最后利用相应地区的卫星影像进行地图投影及影像贴图,两种数据结合构建复杂景区的三维地图模型,给游客带来更为精确直观的定位信息和空间要素信息。  相似文献   
107.
The water level of marsh wetlands is a dominant force controlling the wetland ecosystem function, especially for aquatic habitat. For different species, water level requirements vary in time and space, and therefore ensuring suitable water levels in different periods is crucial for the maintenance of biodiversity in marsh wetlands. Based on hydrodynamic modelling and habitat suitability assessment, we determined suitable dynamic water levels considering aquatic habitat service at different periods in marsh wetlands. The two-dimensional hydrodynamic model was used to simulate the temporal and spatial variation of water level. The habitat suitability for target species at various water levels was evaluated to obtain the fitting curves between Weighted Usable Area (WUA) and water levels. And then suitable water levels throughout the year were proposed according to the fitting curves. Using the Zhalong Wetland (located in northeastern China) as a case study, we confirmed that the proposed MIKE 21 model can successfully be used to simulate the water level process in the wetland. Suitable water levels were identified as being from 143.9–144.2 m for April to May, 144.1–144.3 m for June to September, and 144.3–144.4 m for October to November (before the freezing season). Furthermore, proposed water diversion schemes have been identified which can effectively sustain the proposed dynamic water levels. This study is expected to provide appropriate guidance for the determination of environmental flows and water management strategies in marsh wetlands.  相似文献   
108.
目前存在有多种地幔热导率模型,不同模型在数值和随温压变化的特征上有明显的差异.为探究不同热导率模型对动力学数值模拟结果的影响,本文对不同模型下的岩石圈张裂过程进行模拟研究,探讨地幔热导率对岩石圈热传输、变形和熔融过程的影响及其作用机理.结果显示,不同热导率模型下,岩石圈的变形和熔融特征表现出明显差异.高热导率模型下,岩石圈破裂较晚,形成陆缘较为宽阔,地壳熔融强烈而地幔熔融较弱;低热导率模型下,岩石圈破裂较早,形成陆缘较为狭窄,地幔熔融强烈而地壳熔融较弱.这种差异源于不同地幔热导率下岩石圈和地幔热状态的变化及相应力学性质的改变.高热导率下,热传导的增温效应显著,岩石圈呈现较热的状态,其强度整体较低,壳幔耦合减弱;而低热导率下,热对流的增温效应显著,岩石圈呈较冷的状态,其强度整体较高,壳幔耦合增强.基于模拟结果,本文认为地幔热导率的选取对动力学模拟的结果有着较为显著的影响,相对于随温压的变化,热导率数值的差异对动力学数值模拟的结果影响更大,尤其是对于地幔熔融过程的影响.  相似文献   
109.
Forest ecohydrological feedbacks complicate the threshold behaviour of stormflow response to precipitation or wetting conditions on a long-term scale (e.g. several years). In this study, the threshold behaviours in an evergreen-deciduous mixed forested headwater catchment in southern China were examined during 2009–2015, when damaged vegetation was recovering after the great 2008 Chinese ice and snowstorm. The non-uniqueness of the thresholds and the slow and rapid responses of stormflow at the outlet of the catchment in different hydro-climate datasets with different maximum values of gross precipitation (P) and sums of precipitation and antecedent soil moisture index (P + ASI) were assessed. The thresholds of P and P + ASI required to trigger stormflows (i.e. ‘generation thresholds’) and the transition from slow to rapid responses of stormflow (i.e. ‘rise thresholds’) were compared both seasonally and annually. The results indicated significant differences in the analysed datasets, highlighting the need to compare thresholds with care to avoid misinterpretation. Seasonal variations in threshold behaviours in the catchment suggested that vegetation canopy interception contributed to higher rise thresholds, and wetter conditions resulted in higher runoff sensitivity to precipitation during the growing and rainy seasons. Furthermore, the generation thresholds were higher in the dormant season, possibly due to drier soil moisture conditions in the near-channel areas. During the vegetation recovery period, the annual generation thresholds increased, however the rise thresholds did not exhibit a similar trend. The rapid stormflow response above the threshold decreased, possibly due to transpiration and interception of the recovered vegetation. However, the slow stormflow response to small rainfall events below the thresholds was higher in wetter years but lower in drier years, suggesting that the total water input dominated the stormflow response during small rainfall events. In conclusion, the seasonal and annual variations in threshold behaviours highlight that vegetation recovery and hydro-climatic conditions had a notable impact on the stormflow response.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号